

Study of EUV Mask Defect Inspection and Repair Using Conventional Tools and Techniques

Yutaka Kodera, Takashi Yoshii, Takeshi Isogawa, Shinji Akima

Toppan Printing Co., Ltd.

Technical Research Institute

Semiconductor Related Research Laboratory

Outline

- 1.Motivation
- 2.Experiments
- 3.Inspection evaluation result
- 4. Repair evaluation result
- **5.Summary**

Motivation

- ■EUV mask yield and defect inspection has been focused recently.
- ■At present situation, applied optical mask inspection and conventional repair technology have been used for EUV mask fabrication.

Technical	Issue on	EUV	Lithogran	hv
. John Jan	.00a0 011			, ,

Rank	2005	2006	2007	2008	2009
1	Resist	Source	Source	Source	Mask
2	Source	Resist	Resist	Mask	Source
3	Mask	Mask	Mask	Resist	Resist

source: EUV Focus Areas 2005-2009 (SEMATECH)

EUV mask optical inspection performance and repair capabilities were evaluated by using existing tools.

Experimental Flow

Inspection

Target Defect Size

Feature

2010 International EUVL Symposium

HP 27nm Dense Line

Materials

*EUV type B was evaluated in this study.

In case of EUV, defect sensitivity requirement needs to be achieved only by reflected light inspection.

Image Contrast vs. Focus Offset - @257nm tool

■Checked image contrast variation on 257nm inspection tool.

- •Best contrast was not achieved at best focus point.
- •Sensitivity may be varied by contrast difference.

Sensitivity vs. Focus Offset -@257nm tool

- •Best sensitivity is not always achieved at best focus inspection.
- •Defect sensitivity for each defect types could be differed from inspection conditions.

Image Contrast on 19xnm tool

- •Contrast was changed by applying different focus offset.
- •Need further investigation to know image contrast difference through different focus offset.

Defect Sensitivity Analysis on 19xnm Tool

	Defect & Torget	257nm tool	19xnr	m tool	
	Defect & Target	257 nm (00)	Negative focus	Positive focus	
HP27	T 33.2nm	0 0	0 0	0 0	
롸	T 23.7nm	0 0	0 0	0 0	
			: Detected	: Not detecte	

- •For these defect types, positive focus inspection detected target size defects.
- •It seems that positive focus inspection is good for edge defects.
- •Need further evaluation to verify the best inspection condition for other defect types.

EUV Mask Repair Test

Recipe	Α	В	
Repair Tool	EB tool		
Condition	Standard condition	Optimized setting	
Post Repair			

- •Right after repair process, these repaired sites do not show any problem.
- •But it is known that repaired pattern shape changes as time advances.

Defect Repair of EUV Masks

•In PMJ2010, repair performance with optimum setting was reported.

- •The optimum recipe was slightly sensitive.
- •Tried to improve repair performance stability.

Time Dependent Change Comparison

•For this test, dug 1.5um width hole with different recipe and observed the shape of the pattern.

- •Under standard condition A, shape change was observed even after 1 hour since repair was done.
- •No time dependent change happened under optimized condition B.

Repair Shape Assessment

•Checked repair shape after 1 day since repair was done.

- Condition A showed dramatic shape change.
 - •The size of the pattern grew almost double from original size.
- Condition B did not show any difference from original shape.
- •The optimized condition does not appeared to cause time dependent change.

Summary

Inspection

- ■EUV mask inspection was performed by conventional optical inspection tool.
- Defect sensitivity for each defect types could be differed from inspection conditions.
- Inspection strategy needs to be considered how to detect all critical defects by minimum inspection times.

Repair

- Developed new recipe to improve post-repair pattern shape.
- ■Confirmed post-repair pattern shape was very stable.
- Succeeded to stabilize EUV mask repair quality.
- ■Need to evaluate new recipe is applicable for actual defect repair process.